Amenable uniformly recurrent subgroups and lattice embeddings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Uniformly Recurrent Subgroups

We define the notion of uniformly recurrent subgroup, URS in short, which is a topological analog of the notion of invariant random subgroup (IRS), introduced in [2]. Our main results are as follows. (i) It was shown in [26] that for an arbitrary countable infinite group G, any free ergodic probability measure preserving G-system admits a minimal model. In contrast we show here, using URS’s, th...

متن کامل

Uniformly Recurrent Subgroups of Inductive Limits of Finite Alternating Groups

We classify the uniformly recurrent subgroups of inductive limits of finite alternating groups.

متن کامل

Uniformly Recurrent Subgroups of Simple Locally Finite Groups

We study the uniformly recurrent subgroups of simple locally finite groups.

متن کامل

Non-elementary amenable subgroups of automata groups

We consider groups of automorphisms of locally finite trees, and give conditions on its subgroups that imply that they are not elementary amenable. This covers all known examples of groups that are not elementary amenable and act on the trees: groups of intermediate growths and Basilica group, by giving a more straightforward proof. Moreover, we deduce that all finitely generated branch groups ...

متن کامل

Dynamical systems: recurrent and uniformly recurrent points

10.2. Example We consider the abstract dynamical system given in 9.18: the shift system over S where the phase space X is the product space {1, . . . , r}, for some r ≥ 2. For any R ⊆ S, there are x and U such that R(x, U) = R: simply pick x ∈ X be such that x(s) = 1 iff s ∈ R; so x might be considered as a characteristic function of R. Put U = {z ∈ X : z(1S) = 1}, a clopen subset of X. Then fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Ergodic Theory and Dynamical Systems

سال: 2020

ISSN: 0143-3857,1469-4417

DOI: 10.1017/etds.2020.2